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SUMMARY

To obtain complete and rigorous solutions of the three-dimensional ,
laminar boundary layer over a finite airplane wing, a flat ellipsoid was
chosen as a model to generate concrete results. Initial efforts were

directed toward calculating the inviscid flow and the selection of coordi-
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nate system, and this was followed by a detailed investigation of the
boundary layer restricted to the symmetry-plane. This investigation
showed that as the incidence increases, the separation point on the upper
surface does not always move continuously forward; instead, it first

moves forward and later rearward. Then, at a critical incidence, it

jumps forward and moves thereafter close to the leading edge. This
“'separation jump'" phenomenon was further found to be little affected by
varying the span, but critically dependent on the chord: a longer chord
prompts a larger jump. Although such separation jump has been reported for
a ‘body of revolution, it has not yet been reported for wing surfaces. The
significance of this phenomenon is apparent when one considers that the
separation jump may well occur on airplane wings in general and probably i
accounts for what we might call "sudden stall." !




1. INTRODUCTION

For aerospace applications, two typical body geometries are of
particular importance for fluid dynamics study: an elongated body such
as a fuselage or missile, and a flat wing. While our recent three-
dimensional boundary layer research has been largely restricted to the
body problem}22) the present study focused on the wing.

Investigation of the wing's boundary layer has been for the most
part restricted to an infinite yawed wing(3’4's) , for which the method
and concept are essentially two-dimensional. A complete and rigorous
solution for the boundary layer over a finite wing has been hampered by
at least two factors. First, until recent years, calculation for a three-
dimensional boundary problem was impractical. Second, the corresponding
inviscid solutions have been inadequate. Classical linearized lifting-
wing theory yields a singular solution at the edges which, in turn, pre-
vents the boundary layer there from being determined. The result is not
only that the boundary layers on the upper and lower surfaces must be
treated separately, as if they were independent, but also that flow
separation cannot be accurately determined. (Accurate calculations of
the leading-edge boundary layer are critical to accurate determination
of flow separation, as will be seen later.) On the experimental side,
three-dimensional boundary layer investigation has been largely limited
to surface-flow visualization, and quantitative measurement has been rare
and fragmentary.

In this study, we choose a flat ellipsoid as a wing model. Fig. 1
shows the flow diagram where a, b and c denote the semi-axes along the




Symmetry plane

Y/

Fig. 1. Ellipsoidal Wing

X,Y, Z-direction. Since the exact inviscid solution®) for an ellipsoid

is known in simple closed form, our efforts to obtain concrete solutions
were considerably simplified. This model allowed us to study thoroughly
various basic aspects of the boundary layer over a wing-like geometry. A
flat ellipsoid does not embrace all of the lifting characteristics of a

real, finite wing. However, rigorous treatment of a real wing would
necessarily require the hookup of two extensive computing programs, one

for the inviscid calculation and one for the three-dimensional boundary layer
calculation. The task is straightforward, but time-consuming. In addition,

mumerical solutions do not usually yield accurate pressure gradients or

o it A
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even higher derivatives without special efforts. Such elaborate calcu-
lations are perhaps better suited to future refinements. In the early
1950's, Zaat, et al.(s) attempted to calculate the boundary layer on a
flat ellipsoid; however, this calculation was restricted to the flat
portion of the body and only scanty results were reported.

The present study was concerned with the‘synmetry-plane boundary
layer over an ellipsoidal wing. As restricted as this problem may be,
similar investigations previously for an inclined body of revolution(g’m)
revealed new features of fundamental significance. Among them was the
"'separation jump'' phenomenon, referring to the sudden movement of the
separation point on the leeside symmetry-plane as the incidence continues
to increase. As the incidence increases from zero, the separation point
moves only slowly, remaining near the rear end of the inclined body; but
upon reaching a critical incidence, the separation point “‘jumps" to the
front end. In the case of a spheroid of thickness ratio 1/4, this critical
incidence was found to be around 40°. It was also found (11412 that accampanying
such discontinuous change of the separation point on the leeside symmetry-
plane, there is a corresponding change of the separation pattern on the
whole body from an open-type of separation to a closed-type of separation.
This observation has changed the conception of three-dimensional flow
separation. More recently, Cebeci, Khattab and Stewartson(ls) further
concluded through an asymptotic formulation that the same critical inci-
dence holds also for thinner spheroid even in the limit of zero thickness.

The present study has found a similar separation jump phenomenon.
This was unexpected partly because of the wide differences between a body

flow and a wing flow, and partly because no such separation jump was ever
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reported for a wing-like obstacle in the literature. Why this phenomenon
has eluded the attention of researchers thus far is puzzling. It may be
due to the fact that detailed boundary layer calculations were not
systematically carried out to a sufficiently high incidence. The same is
true for the body of revolution problem prior to our previous publi-

cations (9,10) :

Although it has long been known that when a short separa-
tion bubble on an airfoil bursts into a long one, there results a sudden
change of separation point; the idea of separation jump considered here is
a distinct phenomenon.

To establish some basic trends, calculations were repeated for the
ellipsoid with different axis-ratios. This report for the most part pre-

sents these findings (section 4) following discussions on the coordinate

systems in section 2 and the inviscid solutions in section 3.




2. COORDINATE SYSTEMS

Several coordinate systems were referred to in the present wing
problem. To avoid confusion, a brief discussion of them follows in
order to make clear why they are introduced and how they are related to

one another.
2.1 Ellipsoid Coordinates

The introduction of an ellipsoidal coordinate system(6) is for the
purpose of obtaining the incompressible, potential flow solution by the
classical method of separation of variables. We begin with the b-sic

ellipsoid in terms of the rectangular coordinates (Fig. 1),

2 2
) il § a8
b s, i o 1 a” >b® >c”, Q)
a b c ’
then form,
2 Y2 2
X z
+ + —z—-l. 2)
aT+A bzﬂ c *

Corresponding to values of A from -a? to =, the result is a large family
of confocal quadric surfaces. The values of A may be divided into three
groups denoted by (€, n, %) in accordance with

-azé ;é-bz < n é-czé€4w.

Then the surface { = constant represents a family of ellipsoids with

£ = 0 being the basic ellipsoid, n = constant a family of hyperboloid of




of one sheet and ¢ = constant a family of hyperboloid of two sheets.
The intersecting curves between these three families of surfaces define

a set of ellipsoidal coordinates. Fig. 2a shows a set of three such

coordinate surfaces, while Figs. 2b and c present top views of the

@ coordinate lines on the basic ellipsoid.

Hyperboloid of one sheet

Hyperboloid of
two sheets

Ellipsoid

(a) Coordinate surfaces(from Ref. 7)

7 -7 |
Womegt 7 -c? \ o’ s8s 4
B gt
(b) n-constant lines (c) z-constant lines

Fig. 2. Ellipsoidal coordinates
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The relations between (£, n, %) and (X, Y, Z) are

2 2 2

X « (a *;Ha +n!ga +3)

@*-b%)(a*-c®)

2 2 2

+ +

3 s sl ' (3a,b,¢)
(b2-c2) (b°-ad)

2 2

2
22 . L +§!gc +n)§c +7)

c?-a9) (c* %)

Since a set of values of (§, n, ¢) detemine eight points in the X, Y, Z-

space, these relations are not unique.
2.2 Ellipsoidal Transformation

A unique transformation may be achieved by introducing the angular
variables y and 6(14). so that

X = g+a® cos y, l=y<m,

Y = gE+b” sin ¢ cos 6, 002, (4a,b,c)

Z = Jemz sin ¢ sin 6.

Since the relations between (y,8) and (n,%) can be readily tound
from Eqs. (3b,c) and (4b,c)., the details are not given here. On the
ellipsoid (£ = 0), Eqs. (4a,b,c) become




X = acosy,
Y = b sin pcos 8, (5a,b,c)
Z = ¢ sinysin 0,

This transformation yields a unique correspondence between (X,Y,2)
and (£,9,0), resembling the more familiar spherical coordinates. However,
the surfaces with £, 8, y, respectively, constants, are not orthagonal
to one another; hence (£, 6, ) do not form an orthagonal coordinate system
which can be used, for example, to replace the system (£, n, ) for obtain-
ing the inviscid solution. The purpose here is simply to incorporate later
the coordinates (,0) in order to form a boundary layer coordinate system
which does not require orthagonality except on the body surface.

Geometrically, for an arbitrary point Q on the ellipsoid, the corres-
pondence between (X,Y,Z) and (£, 6, ¢) is illustrated in Figs. 3a,b. It
must be emphasized that both 6 and y are eccentric angles. Fig. 3a shows
how XQ is related to . Substituting XQ- a cos ¢ into Eq. (1) indicates

that the cross section at X = XQ is an ellipse given by

Y2 2
o * 4 = L
b®sin®y c“sin®y

Fig. 3b shows how, in this cross section, the coordinates YQ and ZQ are
related to 6. Fig. 3(c) shows the coordinate nets on the ellipsoid sur-
face, consisting of the 0-constant lines and the x- or y- constant lines.

These two sets of coordinate lines are orthagonal to each other.




Z (a) Illustrating XQ with y

. Radius = b sin

Y

Fig. 3.

(b) Illustrating (YQ’ ZQ) with (y,0)

/ @ - const. lines

7
—

X -const, or
W -const. lines

(c) Surface coordinate nets

Geometric correspondence between (X,Y,Z) and (£,6,¥)
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2.3 Boundary Layer Coordinates

For the boundary layer coordinates (Fig. 4), we retain the two
surface coordinates y and 6 just discussed, and the normal direction to

the body, designated z. These three coordinates are mutually orthogonal

Fig. 4. Boundary layer coordinates

on the body surface, but not above the body. However, nothing more is
required as far as the boundary layer equations are concerned. We shall
further introduce p to replace y so that,

§ = cosypy=yu, 0=y<m, 12u=>-1,
and
} '_—: Jl').lz sin © (6a)bvc)

-C 2

.- 1-uy® cos 8

®iN
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The (u,0,z) system is very similar to that used in our previous
investigations for the body problem except that 6 here is an eccentric
angle. As a measure of length along the X-direction, M is more con-
venient than y. One can, of course, also introduce v = cos 9 in analogy

tou = cos ¥, so that

X/a = cos ¢ = u,
Y/a = % J;uz ‘fl-vz, (7a,b,c)
Z/a = % ‘Jl-uz V.

However, in using v one must take care of the positive and negative signs

for Y and Z in the range 0 <60 < 2w.




3. INVISCID FLOW INPUTS

3.1 Velocity Potential

Consider all the length coordinates, cartesian or curvilinear, to

be non-dimensionalized by a, the major semi-axis, and retain the same

symbols, X, Y, Z and £, u, ¢ for the dimensionless variables. The
velocity potential ¢ is non-dimensionalized by V_ a, velocities by V_
and pressure by oV _2.

The potential ¢, due to a uniform flow (non-dimensionalized) cos a

along the Y-direction past an ellipsoid (Fig. 1) is given by(6)

r,r o
Y cos a + 2% (cos a)Yj{ —‘15-2—— . (8a)

(8+r )86

©
—
[ ]

b/a, r, = c/a,

O
|}

[enEeder] 2, (8b,¢,4)

and
o
dg ¢
8. = 11 / S :
On th;e surface, £ = 0, the potential becomes,

¢ = 2coqu
T‘T‘_ ’
1s o S

(8e)

where the subscript s denotes the body's surface.




Similarly for a uniform flow sin a past an ellipsoid along the Z-

direction, the corresponding potential is

. 0y - 4 (9a)
¢, = Zsina + »—— (sin a) Z _€2—’
! Yo .[ (&+r3)8

where
Yo = I, T < 9b
0 "1"2 [ —_ir(&rz)c (9b)

On the body,

« 2. sina
®2s "777'0— Zg - (9¢)

Thus, for an ellipsoidal wing at incidence as depicted in Fig. 1,
the resulting potential is obtained by superimposition,

¢ = 6+
and (10a, b)

¢s ol | T 925
The method of evaluating the elliptical integrals is given in the Appendix.

3.2 Surface Flow in Terms of (u,6)

For later boundary layer study, the inviscid solutions must be
expressed in terms of the surface coordinates (u, 6). To do this we first
rewrite Eqs. (6a,b,c) in non-dimensional form. | ]

X = y, g

|

Y e-r, 1-u2 sin 6,
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2 = =T, Jl-uz cos 6,

from which the metric coefficients !\l and h8 are found to be

we (B - B @7

l-uz(l-r% sin0 - r%cosze) e
= [ vi (11a)
1-u
X2 . (av)2  (3z2)2] /2
o [[w *'[ *[w}]
= q-p))l/? [rlzcosze + 12 sinze]l/ 2, (11b)

We denote the surface velocities along the u, 6-coordinates by U

and V so that

(12a,b)

Substituting in

1 5] ;
U = g, sSind@ + g, cos e)
;‘ 1-¢ ( g : :

1 A
V = T, Jl-uz (-glcos ® + g, sin 0), (12¢,d)
~8,cos 6 + g; siné

(rf cos® 8 + rgsinze)]'/ 2
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where

81 I—E—'_ 0 rl ’
(12e,f)

£ Zsinar
8 Z-Yo -

It is noteworthy that V is independent of u.

The surface pressure is given by

p-p.m 30 - @A) (13)

With some manipulations, one finds the pressure gradients

2 1 u?
* - ’ (14a)
lig“ B, . 1 -u%l-r?sin%-r%cos%)]

U u(glcose-gzsine)
hig?8 By [1-uz(l-rfsinze-rgcosze)ﬂ/ L

UZ (-riﬂ%)uzsinecose
e 2 - PR W
8 1-u (1-r§sin 8-r5c0s e)

v glsinemzcose

.h-; (r%coszewgsir—xz e)

172

- Ve (rf -rg) sinécosé

X (14b)
Ry ze+r§sinze)

Z
) (rlcos
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3.3 Pressure Distribution

Sample pressure distribution for an ellipsoid witha : b : ¢ = 30
16 : 1 at a = 10° is shown in Fig. 5. Although for a wing-like geometry
the gradients around the leading edge and the tip are usually very large,
they are finite. This highlights the importance of avoiding the linear-
ized thin-wing theory in the present work. The linearized theory always
yields a singular solution at the edges, which, in turn, prevents the
boundary layer there from being determined. Consequently, the boundary
layers on the upper and lower surfaces must be treated separately as if
they were independent, and there is no single complete boundary layer
solution on a finite wing at incidence.

A recent paper by Bluford (1%) reports a Navier-Stokes solution over
a delta wing. It should not be assumed that once a Navier-Stokes solution
is obtainable, the simpler boundary layer problem (for a finite wing) will
automatically become easy. In this regard it should be pointed out that
the Navier-Stokes solution was obtained with additional constraints, among
which are the assumption of the conical flow and of the independence be-
tween the flows above and below the wing surface. This is not intended

as a criticism of this outstanding paper, but merely to point out the

current state of knowledge of viscous flow over a finite wing.

Ty

T R
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¢ 2.0 J+ = 0 (root section)
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1.0
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Fig. 5. Surface pressure distribution at chordwise sections |




4, SYMMETRY-PLANE BOUNDARY LAYER

While the calculation of the full three-dimensional boundary layer

over an entire ellipsoidal wing at incidence is still in progress, con-
sideration in this section of the report is restricted to the symmetry-

plane, or the root section of the wing (Fig. 6).

T e gy

Fig. 6. Symmetry-plane flow diagram

With reference to the boundary layer coordinates (section 2), u and
8 (-l<pu=<l, 0=<6 < 2r) are the surface coordinates. Along the
symmetry plane, u equals zero. z is normal to the body; u, v and w are
the corresponding velocitie; z is nondimensionalized by a/yR, where

R(=Va/v*, v* the kinematic viscosity) is the Reynolds mumber, w by V./ YR.
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u, v are non-dimensionalized with V_, other inviscid variables such as
U, V, p were already defined in Section 4.

Along the symmetry-plane,

2
- du u 3'u U
u= = = :U' ’0
kL) 9z ;;Z 30 ’
(15a,b)
AR NESEE
kLM u 58' ”
From Eqs. (11a, b), we also have with u = 0,
8"
he = (r%cosze + rgsinze)l/z . (16a,b)
3he- ahus ahll-o
U 38 3 §

4.1 Boundary Layer Equations

In virtue of Eqs. (15a,b and 16a,b) the pertinent symmetry-plane

boundary layer equations became,

v Uy w _
KT 5 W
2
Vv o - 3V
AW VR BB oI
® ® (17a,b,c)
V"’“uwa‘ﬁx*("u)z_vz a[ahe‘
hgoe 3z h, RbRy B (3w

il
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Along with v and w, u, (= du/a3p) is treated here as an unknown entity by ¥
three equations in two coordinate variables, 6 and z, subject to the !

boundary cpnditions %

U
v=YV, uu’Uu (-W) at z + «,

(18a,b)
v-w-uu-o at z = 0.
&
As V is independent of u, it remains the same as given in Eq. 12d. g
b
With u = 0, other inviscid inputs become .
= aU = 1 A
Uu Em glsme + gzcose,

3 —V(glsine + gzcose)
hig3® he(rlzcosze + r%si.nze)u7

)

VZ (ri-r%) cosf sind

V4

e (19a,b,c,d)
T'; (ricosze + rzsinze) 5 it

oh
-5% [-éu—e] --(r%cosze + r%si.nze)l/ . --he.

The skin friction Cgg is defined by |

- L (3
i [ﬁ] 2+ 0, (20)

= —




and the replacement thickness Ag is likewise defined by

Ae -f?l-v/V)dz. (21)
(]

4.2 Method of Solution

The same methods and camputing programs were employed for the
solution as those previously used for the symmetry-plane boundary layer
over an inclined body of revolution. The stagnation-point boundary layer
was solved first using a separate computing program previously developed

in accordance with the Howarth-Squire solution(m).

Then the existing
symmetry-plane boundary layer program was modified for the present appli-
cation. On the lower surface, computation began at the stagnation-point,
marching straight toward the separation point. For the upper surface,
computation must first pass through the leading-edge, continuing toward
the trailing edge.

The coordinate 6 is very convenient for uniquely designating points
at different quadrants on the lower and upper surfaces, but such an
eccentric angle does not indicate directly the corresponging location on

the wing. As a minor variation to Eqs. (7a,b,c), we introduce a chordwise

coordinate

v = cos (270°- 08), 0=06=< 21, -1.0=v <1.0,

so that in following the usual convention, v equals +1.0 at the trailing

edge (6 = 270°) and -1.0 at the leading edge (® = 90°) as shown in Fig. 7. The

distinction between the upper and lower surfaces will be explicitly stated.
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We shall use 6 during the calculations, and use v along with 6 in pre-

senting the results.

_-—-‘—-\\
; , 210-6

% T o e
% 050

Fig. 7. Coordinate v

4.3 Results

To identify the separation jump phenomenon and to establish some
basic trends, calculations were made for four different cases, corres-

ponding to four different axis-ratios a:b:c, each at various incidences.

4.3.1 Case 1 - Typical Problem

Calculation for the first case was based upon axis-ratios a:b:c equal
to 30:6:1. This corresponds to a typical situation for the conventional,

large aspect-ratio wing. Fig. 8 shows the pressure distribution on the

upper surface. Characteristically, negative pressure prevails near the

leading edge. As the incidence increases, the pressure gradient becomes

A
larger. The lower-surface pressure distribution is symmetric to the upper- ;
1

surface pressure distribution about the center line (Fig. 8),sothat negative
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Fig. 8. Pressure distribution on the upper surface
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pressure would prevail near the trailing edge instead of the leading edge.
Note that along the abscissa both scales of 6 and v are shown.

Fig. 9 shows the skin-friction (cfe) distribution on the lower sur-
face. The mostly negative sign follows from the coordinate system used
where 6 equals zero at the mid-chord on the lower surface and increases
clockwise as shown in Fig. 6. After reaching a peak near the leading edge,
Cgq drops monotonically for smaller a's (<6°) until it becomes zero. For
larger a's (> 6°), Cgg increases sharply near the trailing edge. reflecting
a strong accelerating flow under an extremely favorable pressure gradient.
As a increases, the separation point defined here by the vanishing of skin
friction, gradually moves rearward.

The detailed variation of Ceo around the leading-edge is shown in
Fig. 10. In this area, not only c £0° but also the whole flow undergoes a
drastic change. On the upper surface, Ceo reaches a maximm close to the
leading edge. For example, at a = 10°, the maximum magnitude is 10 times
larger than Cgg Over the rest of the symmetry-plane. The usual inability
to treat the leading-edge boundary layer affects not only the determination
of total skin-friction, but more important, the location of separation. As
we shall see next, the latter depends critically on the accurate calculation
of the leading-edge boundary layer to determine whether separation would
take place near the leading-edge or further downstream.

The skin friction behavior on the upper surface is more interesting
(Fig. 11). When the incidence remains below 10.5°, Cgq always drops mon-
itonically until it becomes zero, and the separation point moves continually

forward. At o = 10.75°, the skin friction decreases first to a minimm and
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then rises somewhat before finally falling to zero. At slightly higher
incidence, a = 10.85°, the minimum skin-friction point further shifts
downward, and the separation point moves rearward instead of forward. As
this trend continues, the minimm skin-friction touches zero at a =  § jlt

at which point the separation point takes a discontinuous jump forward.
4.3.2 Case 2 - Shorter Span

In the second case, the chord b and the thickness c were kept fixed,
while the span, a, was reduced so that a:b:c equals 10:6:1 and the aspect-
ratio of the wing's planform thus becomes smaller. The resulting skin-
friction distribution on the upper surface is shown in Fig. 12. Notice
again the separation-jump phenomenon but that in this case the critical
incidence increases from 11° (case 1) to 13°. The latter is evidently due
to the smaller aspect-ratio. Thus changing the span does not affect muc;\

the separation-jump phenomenon.
4.3.3 Case 3 - Longer Chord

Case 3 is for a:b:c = 30:8:1. Here, a and c are kept constant, while
b is increased from 6 to 8. The corresponding distribution of the skin
friction on the upper surface is shown in Fig. 13. A longer chord makes
the wing more sensitive to an increase of incidence. The non-monotonic
decrease of skin friction as a characteristic of the separation jump phe-
nonemom becomes noticeable at smaller incidence, and the critical incidence
for the jump decreases to a = 8.7°. Of the first three cases studied, the
jump for case 3 is the most pronounced and covers more than half of the

chord length. Hence, an increase of b with a and ¢ fixed considerably en-

hances the ''separation jump' phenomenon.
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4.3.4 Case 4 - Shorter Chord

Case 4 is for a:b:c = 20:5:1. In comparison with case 1, the span
a is reduced from 30 to 20 and the chord b is reduced from 6 to 5. The
resulting upper-surface skin friction Cgo is shown in Fig. 14. Sur-
prisingly, for all incidences, Ceo always decreases monotonically to zero;
the separation point moves forward coﬂtinuously; and the afore-noted
separation jump was not found. In case 2, we noted that reduction of a
from 30 to 10 with b and c held constant does not affect the separation
jump; hence, the disappearance of the separation jump for the present
case 4 must be due to the shortening of b rather than a. In other words,
a shorter chord tends to reduce or even to eliminate the separation jump.
This conclusion agrees with the conclusion from case 3; i.e., the separation

jump depends critically on the chord/thickness ratio, with a longer chord
tending to prompt a larger jump.
4.3.5 Separation Versus Incidence

The location of the separation point with respect to the incidence for
the four cases considered is summarized in Fig. 15. The curves are numbered
according to the cases studied. Incase 1, as a increases from 60, the sepa-
ration point moves gradually forward, at a = 10.85° it begins to move
rearward; and at a = 11°, it jumps to near the leading edge. The jump for
case 3 is the most drastic whereas case 4 shows no jump at all. It is under-
stood that for a < 6°, the separation point always moves forward with in-
creasing incidence. Results for such low incidences have not been included
in this report because they are not relevant to the main theme of separation

Jump .
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4.3.6 Jump Mechanism

The reason for the occurrence of separation jump with a flat wing
is as was the case for an inclined body of revolution(g’lo), i.e., the
barrier of the pressure gradient over the front chord. Fig. 16 shows
typical gradient variations corresponding to the pressure distributions
of Fig. 8. At higher incidences, this gradient rises first very rapidly
to a maximm in the front, then falls off. This leads to the formation of
a "hump' or 'barrier' of the pressure gradient distribution. When such a
barrier is not sufficiently high and is, therefore, surmountable (e.g.

@ < 10° in the case shown), the flow near the surface may penetrate farther
back even after being severely decelerated. This is reflected in the
variation of skin friction presented in Figs. 11-13. There Ceg decreases
first to a minimum, then gradually rises again before its final drop to
zero further downstream. This is a crucial mechanism which prevents the
separation point from moving forward with increasing incidence and leads

to the subsequent separation jump at a still higher incidence. Obviously
when the barrier is high enough (a > 10°), such flow penetration becomes

increasingly difficult. At same critical incidence, the near-surface

flow would be stopped near the leading edge and separation occurs immediately.

4.3.7 Sudden Stall

Whenever a separation jump occurs and the separation begins so close
to the leading edge that stall is likely to follow, especially for the inner
span. Since such a stall occurs suddenly as the incidence increases, it is

therefore appropriate to call it ''sudden stall."

T 16 2 S
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In this connection, we should mention the classical 1lift curve®
(Fig. 17) which illustrates an abrupt stall (see, for example, Ref. 18).
However, Fig. 17 is strictly established by experiments for two-dimensional
airfoils, and the stall there is usually attributed to the burst of a short
bubble into a long bubble, whereas the formation of a bubble separation
further requires the mechanism of a turbulent reattachment. In contrast,
our preceding discussion on separation jump and sudden stall is based on
straight calculation of three-dimensional laminar bounndary layer along the
symmetry-plane without any reference to the bubble (short or long) separa-
tion and the transition to turbulent boundary layer.

.The author thanks Dr. W. Hankey for discussion on this question.
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5. CONCLUSIONS

We have thus presented the results relating to the separation jump
for a wing-like body. Although the literature on the wings flow is
abundant, the separation jump phenamenon has never been reported before.

It is especially noteworthy that the separation jump occurs at relatively
high incidence within a narrow range of incidence. If systematic boundary
layer calculations had not; been carried out to sufficiently high incidence
with small increments of incidence, the phenomenon could not have been
discovered.

In previously reported studies involving an elongated body, once the
separation on the windside and leeside symmetry-plane is systematically
known for various incidences, a general separation pattern over the entire
body can be readily visualized. Consequently, the separation jump phe-
nomenon for the body problem led us immediately to propose the concept of
open versus closed separation(n’lz) long before the full three-dimensional
boundary layer solutions 1,2) were obtained.

In the present wing study, the influence of the symmetry-plane flow
is more restricted to the central portion of the wing. From our knowledge
of the separation characteristics along the symmetry-plane, we have not been
able to conceive a similar overall separation picture for an entire wing
except that a sudden stall is likely to follow a separation jump, especially
for the inner span.

Based on the symmetry-plane boundary-layer solutions, we conclude

sumarily:
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1) The phenamenon of spearation jump on an inclined
ellipsoidal wing has been determined.

2)  Such a separation jump is not much affected by changes
in span, but is greatly enhanced by a longer chord.

3) Separation jump is likely accompanied by a sudden stall.

4) Subject to further verification, real, finite wings are

generally subject to separation jump and sudden stall.
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APPENDIX
EVALUATION OF INTEGRALS

The method of evaluating the integral of the type

I = d.x i al > az > as ’
(x-p)Y (x-0,) (x-a,) (x-a)

can be found from integral tables (17). The basic idea is to introduce a

quadratic transformation

e
x = _a_s:_n_z_L'*_b’ 0 ¢< /2

csin“p +d

so that the integral can be expressed in terms of the Legendre's canonical
forms of the elliptical integrals. In this Appendix, ¢ is just an angular
variable (not a velocity potential as in section 3.1) following the con-

ventional notation. For our problem, we let
8'-02, b'GI, C"‘l, d-l, 3
and write

E = 0.1- 0'29

o = (0= %) Yo -0y d ]

Ay = Q
e Wi

a - a
1 3




Substitution gives

-'2%['(5 "‘:7') F(k,¢) — ;75(1(.¢)] + const., for p = g, ;

I=
% [(C*d) F(k,$) — dE(k,9) — d(C*gtb),h_stinZd,]* const.,
for p = g- .

Where F(4,k) and E(¢,k) are known as the elliptic integral of the first
and the second kind,

F(k, ¢) = / i
O‘Jl-kzsinzq»

0=k=1

[
Btk ',[ 1-k%sin% dé .

The integral for By corresponds to the case p = % » and that for Yo
corresponds to p = g .

whiare: s M MG
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